Pre-class Warm-up!!!
Let f, g, h be three functions $R->R$ and consider their values at 0,1 and 2 .
Which of the following are logically correct statements?
a. If f, g, h are linearly independent then so are the three vectors
Correct Most Incorrect some
$\left[\begin{array}{l}f(0) \\ f(1) \\ f(2)\end{array}\right]\left[\begin{array}{l}g(0) \\ g(1) \\ g(2)\end{array}\right]\left[\begin{array}{l}h(0) \\ h(1) \\ h(2)\end{array}\right]$
b. If f, g, h are dependent, then so are the three vectors

$$
\left[\begin{array}{l}
f(0) \\
f(1) \\
f(2)
\end{array}\right]\left[\begin{array}{l}
g(0) \\
g(1) \\
g(2)
\end{array}\right]\left[\begin{array}{l}
h(0) \\
h(1) \\
h(2)
\end{array}\right]
$$

Cowrect/More IF $a f+b a+c h=0$ zero
incorrect fewer then a $f(0)+\operatorname{bog}(0)+\operatorname{ch}(0)=0$)
c. If the three vectors are linearly independent then so are f, g, h. /correct
$\left[\begin{array}{l}f(0) \\ f(1) \\ f(2)\end{array}\right]\left[\begin{array}{l}g(0) \\ g(1) \\ g(2)\end{array}\right]\left[\begin{array}{l}h(0) \\ h(1) \\ h(2)\end{array}\right]$ incorrect Most
d. If the three vectors are linearly dependent then so are f, g, h .
$\left[\begin{array}{l}f(0) \\ f(1) \\ f(2)\end{array}\right]\left[\begin{array}{l}g \\ g \\ g \\ g\end{array}\right.$
$\left[\begin{array}{l}g(0) \\ g(1) \\ g(2)\end{array}\right]$
$\left[\begin{array}{l}h(0) \\ h(1) \\ h(2)\end{array}\right]$
Correct
Incorrect
c is the contrapositive of b so c is correct
d
a
$\frac{\text { We used c. Last time with } e^{x}, \sin x, 1}{\text { so } a\left[\begin{array}{l}f(0) \\ f(1) \\ f(2)\end{array}\right]+b\left[\begin{array}{l}g(0) \\ g(1) \\ g(2)\end{array}\right]+c\left[\begin{array}{l}h(0) \\ h(1) \\ h(2)\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]}$.

Section 5.1: second order linear differential equations
 Section 5.2: higher order linear differential equations

These two sections do the same thing.

Vocabulary review:

- Linear, homogeneous differential equations
- Solution space, initial value problem
- Linearly independent solutions

New vocabulary

- superposition of solutions $=$ The solutrul to
- characteristic equation a hduogenears equation form a rector ysace

We learn:

- The Wronskian
- Solutions of linear homogeneous d.e.'s form a vector space.
- How to use the characteristic equation to solve homogeneous equations with constant coefficients
- What to do about non-homogeneous equations: complementary functions.

Question 5 from Section 5.1 (like questions 3 and 10 on the HW).

Given two solutions $y_{-} 1=e^{\wedge} x$ and $y_{-} 2=e^{\wedge\{2 x\}}$ homogeneous of the equation $y^{\prime \prime}-3 y^{\prime}+2 y=0$ innear, $2^{n d}$ adder find a particular solution with $y(0)=1$ and $y^{\prime}(0)=0$
$y_{1}=e^{x}$ and $y_{2}=e^{2 x}$ are solutions Here, all functions $c_{1} y_{1}+c_{2} y_{2}$ where c_{1}, c_{2} are numbers are solutions, We find c_{1}, c_{2}
Note: $\left(c_{1} y_{1}+c_{2} y_{2}\right)^{\prime}=c_{1} e^{x}+2 c_{2} e^{2 x}$

$$
c_{1} y_{1}+c_{2} y_{2}=c_{1} e^{x}+c_{2} e^{2 x}
$$

Put $x=0$

$$
\begin{array}{ll}
c_{1}+c_{2}=1 \\
c_{1}+2 c_{2}=0
\end{array} \quad\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

The particular soluturn is

$$
y=2 e^{x}-e^{2 x}
$$

Independence using the Wronskian
Definition
Suppose we are given n functions y_{1}, \ldots, y_{n} Their Wronskian is the function

$$
W(x)=\operatorname{det}\left[\begin{array}{ccc}
y_{1} & \cdots & y_{n} \\
y_{1}^{\prime} & \cdots & y_{n}^{\prime} \\
y_{1}^{\prime \prime} & & y_{n}^{\prime \prime} \\
\vdots & & \vdots \\
y_{1}^{(n-1)} & \cdots & y_{n}^{(n-1)}
\end{array}\right]
$$

Theorem (easy and useful part of bigger theorem)
If y_{1}, \ldots, y_{n} are linearly dependent functions then $W(x) \equiv 0$ (the zero function) Proof. If $c_{1} y_{1}+\ldots+c_{n} y_{n} \equiv 0$ then $c_{1} y^{(r)}+\cdots+c_{n} y_{n}^{(r)} \equiv 0$ for every r. The columns of the Wronskian matrix are dependent. Thus its set $\equiv 0$

Corollary. If $W(x) \neq 0$ then y_{1}, \cdots, y_{n} are independent.
5.1 question 26 (like question 25)

Show that $2 \cos x+3 \sin x, 3 \cos x-2 \sin x$ are independent.

Solution.

$$
\begin{aligned}
& W(x)=\left|\begin{array}{ll}
2 \cos x+3 \sin x & 3 \cos x-2 \sin x \\
-2 \sin x+3 \cos x & -3 \sin x-2 \cos x
\end{array}\right| \\
& =(2 \cos x+3 \sin x)(-3 \sin x-2 \cos x) \\
& \quad-(-2 \sin x+3 \cos x)(3 \cos x-2 \sin x) \\
& =(-9-4) \sin ^{2} x+(-4-9) \cos ^{2} x+(-12+12) \sin x \cos x \\
& =(-13)\left(\sin ^{2} x+\cos ^{2} x\right)=-13 \neq 0 .
\end{aligned}
$$

Thus the functions are independent.

Example done for section 4.7.
Are the functions $e^{\wedge} \mathrm{x}, \sin \mathrm{x}$ and 1 linearly independent?
solutiven

$$
\begin{aligned}
W(x) & =\left|\begin{array}{ccc}
e^{x} & \sin x & 1 \\
e^{x} & \cos x & 0 \\
e^{x} & -\sin x & 0
\end{array}\right| \\
& =\left|\begin{array}{ll}
e^{x} \cos x \\
e^{x}-\sin x
\end{array}\right|=-e^{x}(\sin x+\cos x) \\
& \neq 0
\end{aligned}
$$

Thus the functions are independent.

Pre-class Warm-up!!!

Which of the following statements did we prove last time?
Let $y_{-} 1, \ldots, y_{_} n$ be functions of x and let $W(x)$ be their Wronskian.
$\sqrt{ }$ a. If $y_{-} 1, \ldots, y_{-} n$ are dependent then $W(x)$ is identically zero.
b. If $W(x)$ is identically zero then $y _1, \ldots, y _n$ are dependent.
c. If $y_{-} 1, \ldots, y_{-} n$ are independent then $W(x)$ is not identically zero
d. If $W(x)$ is not identically zero then $y_{-} 1, \ldots, y_{-} n$ are independent
e. We didn't prove any of these last time.

Can we even remember what the Wrouskian is?
f. Are we comfortable making an adjective into a noun?

Solving linear differential equations with constant coefficients: the characteristic equation

These look like $a y^{\prime \prime}+b^{\prime}+c y=0$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are numbers.

Look for solutions of form $y=e^{r x}$

$$
y^{\prime}=r e^{r x} \quad y^{\prime \prime}=r^{2} e^{r x}
$$

Substitute

$$
\begin{aligned}
& a r^{2} e^{r x}+b r e^{r x}+c e^{r x}=0 \\
& e^{r x}\left(a r^{2}+b r+c\right)=0
\end{aligned}
$$

we get solutions when

$$
a r^{2}+b r+c=0
$$

This is the characteristic equation.

Like Section 5.1 questions 33-42.
Find the general solution of the differential equation

$$
y^{\prime \prime}-2 y^{\prime}-3 y=0
$$

Solution. The choracterstic equation is

$$
\begin{aligned}
& r^{2}-2 r-3=0 \quad(r-3)(r+1)=0 \\
& r=3 \text { or } r=-1
\end{aligned}
$$

$y=e^{3 x} \quad y=e^{-x} \quad$ are solutions.
The general solution is

$$
y=c_{1} e^{3 x}+c_{2} e^{-x}
$$

Like Section 5.1 questions 33-42.
Find the general solution of the differential equation

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0
$$

Solution: The characteristic equations

$$
\left(r^{2}+4 r+4\right)=0 \quad(r+2)^{2}=0
$$

$r=-2, y=e^{-2 x}$ is a solution,
When there is a repeated root like this we get another solution $y=x e^{-2 x}$ so the general solution is $y=c_{1} e^{-2 x}+c_{2} x e^{-2 x}$

Check $y=x e^{-2 x}$ is a solution

$$
\begin{aligned}
& y^{\prime}=e^{-2 x}-2 x e^{-2 x} \\
& y^{\prime \prime}=-2 e^{-2 x}-2 e^{-2 x}+4 x e^{-2 x} \\
& y^{\prime \prime}+4 y^{\prime}+4 y \\
& =-4 e^{-2 x}+4 x e^{-2 x}+4 e^{-2 x}-8 x e^{-2 x}+4 x e^{-2 x} \\
& =0
\end{aligned}
$$

A stronger theorem about the Wronskian

Theorem. Suppose the n function $y_{-} 1, \ldots y_{-} n$ are solutions of a homogeneous nth order linear d.e. with continuous coefficients of $y, \ldots, y^{\wedge}(n-1)$.
a. If they are dependent then their Wronskian is identically 0 . We did this already b. If they are independent then their Wronskian is never 0 .

For a proof of b. using 'Abel's formula' see 5.1 question 32 and 5.2 question 35.

Particular and complementary solutions
Like 5.2 questions 21-24
24. A non-homogeneous d.e., a complementary solution y_c and a particular solution y_p are given.
Find a solution satisfying the initial conditions:

$$
\begin{aligned}
& y^{\prime \prime}-2 y^{\prime}+2 y=2 x, y(0)=4, y^{\prime}(0)=8 \\
& y_{c}=c_{1} e^{x} \cos x+c_{2} e^{x} \sin x \\
& y_{p}=x+1
\end{aligned}
$$

Explanation:
A complementary solution is a solutuch to the corresponding homogeneous equation
A particular solution ir an actual solution.

The general solarich has the form $y_{c}+y_{p}$ where y_{c} is a general solution to the nomogeneoul eqn.

$$
\begin{aligned}
& \text { Solve } \quad y(0)= y_{c}(0)+y_{p}(0) \\
&= c_{1}+1=4, \quad c_{1}=3 \\
& y^{\prime}=y_{c}^{\prime}+y_{p}^{\prime}= c_{1} e^{x} \cos x-c_{1} e^{x} \sin x \\
&+c_{2} e^{x} \sin x+c_{2} e^{x} \cos x \\
& y^{\prime}(0)=c_{1}+c_{2}+1=8 \quad \text { so } c_{2}=4
\end{aligned}
$$

The solution is

$$
y=3 e^{x} \cos x+4 e^{x} \sin x+x+1
$$

Non-homogeneous equations
Let $y^{(n)}+p_{1}(x) y^{(n-1)}+\cdots+p_{n}(x) y=f(x)$
be a non-homogeneous nth order linear die. The associated homogeneous equation is the same, with 0 on the right instead of $f(x)$.

Suppose the p_i are continuous.
Theorem 5.
Let $y _p$ be a (particular) solution of the nonhomogeneous equation, and let $y _1, \ldots y _n$ be a basis for the solution space of the associated homogeneous equation.
Then every solution of the non-homogeneous equation can be written

$$
y_{p}+y_{c}
$$

where $y_{-} c=c_{-} 1 y_{-} 1+\ldots+c_{-} n y _n$ is a solution of the associated homogeneous equation.

Reason if y is a solution then $y-y_{p}$ solves the homogeneous equation, so $y-y_{p}=y_{c}$

$$
=c_{1} y_{1}+\cdots+c_{n} y_{n}
$$

and $y=y_{p}+y_{c}$.

What is the general solution to the equation $y^{\prime \prime}-y=0$?
a. $\quad c_{1} e^{2 x}-c_{2}$
b. $\quad c_{1} x^{2}+c_{2} x$
c. $\quad c_{1} e^{x}+c_{2} x e^{x}$
d. $\quad c_{1} e^{x}+c_{2} e^{-x}$
e. None of the above.
where c_1, c_2 are constants.

$$
r^{2}-1=0 \quad r= \pm 1
$$

